J Supercomput (2017) 73:3861-3878 @ CrossMark
DOI 10.1007/511227-017-1985-y

A simple token-based algorithm for the mutual
exclusion problem in distributed systems

Peyman Neamatollahi'® - Yasser Sedaghat! -
Mahmoud Naghibzadeh!

Published online: 22 February 2017
© Springer Science+Business Media New York 2017

Abstract Solving the problem of mutually exclusive access to a critical resource is
a major challenge in distributed systems. In some solutions, there is a unique token
in the whole system which acts as a privilege to access a critical resource. Prac-
tical and easily implemented, the token-ring algorithm is one of the most popular
token-based mutual exclusion algorithms known in this field’s literature. However,
it suffers from low scalability and a high average waiting time for resource seekers.
The present paper proposes a new algorithm which employs a two-dimensional torus
logical structure of N processes and the token-ring algorithm concept. It performs in
a way that increasingly raises scalability and reduces the average waiting time of the
token-ring algorithm. The token makes a circular movement along the columns of the
two-dimensional torus (vertical ring), while the requests for the critical resource make
a circular movement along the rows of the torus (horizontal ring). In this algorithm,
the number of messages exchanged is between 2+/N + 1 and 3+/N + 1 under light
load situations and, under heavy load situations, is at the most three messages per
critical section invocation. Thus, in contrast with the leading algorithms, the proposed
algorithm has gained significant improvements, in addition to having been proved to
operate correctly.

Keywords Mutual exclusion - Critical section - Distributed systems - Token-based
algorithm - Token-ring

< Peyman Neamatollahi
neamatollahi @mail.um.ac.ir

Engineering, Ferdowsi University of Mashhad,

ol Ll Zy I_* I £ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-1985-y&domain=pdf
http://orcid.org/0000-0002-0216-9876

3862 P. Neamatollahi et al.

1 Introduction

A distributed system consists of distinct processes which communicate with each
other through message passing. In other words, a system is called distributed if the
message transmission delay is not negligible compared to the time between the events
in a single process [1]. One of the most important aims in distributed systems is to
provide an environment conducive to sharing resources [2—11]. Hence, it is possible
that several processes simultaneously request a shared resource. On the other hand,
atomic actions play a significant role in a distributed environment. They may be applied
as mechanisms to provide process synchronization [12]. These actions are used to
ensure that inconsistencies do not arise when concurrent activities operate on shared
objects.

Every process has a code section, namely the Critical Section (CS), in which a
process can access a shared resource. There are many situations in single systems, cloud
providers, operating systems, distributed databases, and distributed shared memory,
among others, in which a resource must be accessed by only one process at any given
time [13-20]. When a process tries to invoke a shared resource, it must first enter its
CS. In this way, the process can enjoy exclusive access to the shared resource and
prevent other processes from interfering in its work [21].

Algorithms presented to assure mutual exclusion in distributed systems are named
as Distributed Mutual Exclusion (DME) algorithms. It is necessary to solve the mutual
exclusion problem in order to prevent race conditions and also erroneous results from
correct programs [22]. In distributed systems, every node has a partial or incomplete
view of the system. Moreover, there is not any shared semaphore or infrastructure
in which DME algorithms may be implemented. Consequently, the DME problem
should be solved using message exchange.

1.1 Background

The issue of DME, which had been introduced by Dijkstra [23], has been fairly well
studied [4,15,17,24-30]. In some solutions, a token is a unique entity which allows
a node to enter its CS out of all other nodes that are also attempting to invoke their
CSs. Such solutions are addressed as token-based algorithms. Token-based algorithms
often apply two strategies to assure mutual exclusion, namely the token-asking method
and the perpetual movement of the token [31].

In the token-asking method [32—-36], when a node attempts to invoke its CS, it sends
arequest to other nodes if it does not hold the token and then waits for the token. After
receiving the token, the requester node executes its CS and then passes the token to a
selected requester node. If there is no requester node in the system, the process holds
the token and does not forward it. The present study took advantage of the concept
of this method along the rows of the logical two-dimensional torus (described in the
next section).

In the perpetual token movement strategy, the token passes through the nodes to
allow_each of them to enter their CSs one after another. It is, therefore, possible that
a node receives the token while it passes over, without ever having sent any request.

@ Springer

A simple token-based algorithm for the mutual exclusion... 3863

Consequently, much communication and processing overhead are imposed on the
system, especially in the light load situation in which a few number of processes
attempt to simultaneously invoke their CSs. However, for heavy load situations, these
kinds of algorithms are highly efficient. Token-ring algorithm [37] belongs to the class
of token-based algorithms which employs the perpetual token movement strategy. In
this type of algorithm, in order not to forget a process’s request, the processes are placed
on a unidirectional logical ring, around which the token rotates clockwise or counter-
clockwise. If a node receives the token without having requested CS entry, it forwards
the token to the process in its proximity on the ring. The token’s unidirectional rotation
guarantees the liveness property. The major problem with the token-ring algorithm is
that it is not scalable; by increasing the number of processes, the average waiting
time, before entering its CS, lengthens for the requester node. The current study’s
algorithm utilized the idea of the token-ring algorithm in the columns of the logical
two-dimensional torus. Although there are many DME algorithms in the literature [1,
22,31-33,37], they are not efficient with respect to the number of messages exchanged
in all cases while the current work performs well in all cases.

1.2 Contribution

In the current paper, an algorithm for solving the DME problem is proposed for the
purposes of decreasing communication overhead and increasing the scalability prop-
erty in a system having at least one unresponded CS entry request at any given time.
The main contribution of this work is to decrease the number of messages required for
the heavy load condition by using a two-dimensional torus logical structure. Simul-
taneously, it limits the number of exchanged messages under light load situations in
the worst case. This proposed algorithm is considered as token-based. It uses a two-
dimensional torus logical topology to decrease the number of message exchanges. The
token moves circularly along the columns of the two-dimensional torus to grant the
CS entrance privilege to the nodes while processing CS entry requests by rotating hor-
izontally along the rows of that torus, this is so as to alert all the nodes in the row with a
pending request. The role of the joint node between the row consisting of the requester
node and the column comprised of the token is to change the direction of the token
from a vertical movement to a horizontal one. In other words, when the token reaches
a given row, it acquires information on the pending requests for that row and serves
those requests. The current study’s algorithm assures the safety and liveness proper-
ties. It also outperforms better than many other algorithms such as [1,31-34] because
it decreases the number of messages exchanged under light (between 2+/N + 1 and
37N + 1), medium (between 3 and 3N), and heavy demand (at most 3). It should
be mentioned that the present work considers the status in which only one, VN, and
N node attempt to simultaneously invoke their CSs in light, medium, and heavy load
situations, respectively.

1.3 Organization

The rest of the paper is organized as follows: Sect. 2 defines the system model of the
algorithm; Sect. 3 provides an informal description of the algorithm, data structures

@ Springer

3864 P. Neamatollahi et al.

and messages, algorithm details (in which the pseudo-code of the algorithm is shown),
and finally, describes the details of the algorithm via a scenario; Sect. 4 proves the
correctness of the algorithm. In Sect. 5, the performance of the algorithm is analyzed
and then a conclusion is drawn.

2 Model

The present work implements its proposed algorithm on a distributed system con-
sisting of N nodes with no shared memory. Therefore, these nodes communicate
by asynchronous message exchange. The communication network is presumed to be
error-free. Without generality loss, it is supposed that there is only one process in each
node. Hence, the process and node can be used interchangeably.

The message propagation delay is unpredictable but finite, which means that every
message will eventually be received. Messages may be received in a different sequence
than the sequence in which they were sent. A unique identification number is devoted
to each process which is between 1 to N.

In the case of broadcast-based algorithms [1,33,34], no structure is assumed, and
the requester sends messages to others in parallel, thus broadcasting the message.
In contrast, in logical structure-based algorithms [22,31,32,36-40], the sites in the
system are considered to be arranged in a logical configuration, such as a tree or ring,
and messages are transferred from one site to another along the edges of the imposed
logical structure [2]. The present paper employs a logical structure in the form of a
two-dimensional torus. Token movement, which is essential in this algorithm, is based
on this logical structure of N nodes. To be exact, each node belongs to two logical
rings; the token meets the nodes one by one in the vertical circle, while in the horizontal
ring, the token meets them on demand. Also, the CS entry requests are only propagated
over the horizontal ring. This is the reason why the current work organizes the logical
structure in the form of a two-dimensional torus. It is assumed that N = d2, where
d is an integer number and N is the number of processes. Therefore, the proposed
algorithm’s logical torus has /N rows and /N columns. Each process knows only its
neighbors to the right and down, and consequently, it can forward messages to either
of them, when needed.

It is supposed that processes perform correctly. A process can access a critical
resource only when it is executing its CS and this time is limited. When a process
requests to enter its CS, it cannot generate another request before the first one is
processed and it is given this chance to use the resource and let it go. It is presumed
that there is at least one unresponded request in the system at any given time. Also,
CS entry requests may be satisfied out of the order of their creation, such as in the
algorithms proposed in [31,33,34,36,37,39,41].

3 Proposed algorithm
This section describes a token-based mutual exclusion algorithm for a logical structure

shaped as two-dimensional torus. As long as all nodes are idle, the token starts in any
node i and visits each node in its-cyclic-column. Returning to node i, the token moves

@ Springer

A simple token-based algorithm for the mutual exclusion... 3865

to the right column and visits all its nodes. After covering all columns of the network,
the token returns to node i. Additionally, any node j may spontaneously turn from
idle to waiting. In this case, j solicits a sequence of messages, alerting the nodes in
its-cyclic-row. Of course, the token eventually meets an alerted node. In this case, the
token follows the corresponding line until it meets j. If more than one node moves
from idle to waiting, then some light bookkeeping is required to serve all such nodes.

The description of the current study’s proposed algorithm is divided into four parts:
First, an informal description is illustrated; second, data structures and messages are
explained; third, the overall algorithm is presented, and then, in the last part, a scenario
is applied to illustrate all aspects of the algorithm in detail.

3.1 An informal description of the algorithm

At first, P, (which is in a row a and column b of the logical topology) is the token-
holder process, and the token circulates downward in column b. For simplification,
one can assume that there is only one requester process, say process P; in row m and
column n(m is different from a), which is attempting to invoke its CS. The given
location of these two nodes and the messages exchanged between the system nodes in
the following scenario are shown in Fig. 1a. Process P; sends its request to enter the
CS along the horizontal ring of its row (in the right direction), and it is forwarded by
other processes in row m. Therefore, after receiving process P;’s request all existing
nodes in row m are aware that process P; is waiting to receive the token. As shown in
Fig. 1b, when the token arrives at process P; (which is the common node of the token
movement column and the CS requester node’s row), process P; checks its request
queue. If it is empty, the token continues its downward movement along the vertical
ring. If process P; itself has previously requested access to the CS, then it can enter its
CS, orif there are some other CS entry requests in process P;’s request queue, it sends
the token to its neighbor on the right in order to start the token’s circular movement
on the horizontal ring. With this action, all pending requests in this row are responded
to, and the token eventually comes back to process P;. In this case, the token resumes
its vertical movement from process P;.

To decrease the number of message exchanges, three interesting principles are
applied to the algorithm which has a remarkable influence on the overall performance:

e PCL_1: When arequester process, say process Py, receives arequest message (e.g.,
process Py’s request), it blocks that request because process P, has already alerted
other nodes in its row of the existence of some requests in the same row, therefore,
not requiring process P)’s request message to complete its horizontal circulation.
In addition to decreasing the number of message exchanges, this principle permits
each node to have a local queue of the maximum size of two in order to be able to
save an arriving request and its own request if any.

e PCL_2:Regarding PCL_1, if a process is attempting to invoke its CS while holding
a pending request in its queue, it blocks its own request and does not send it to the
neighbor on the right.

e PCIL_3: Circulating the token in a particular column imposes an extra load on the
nodes in that column. To prevent this additional burden, it is necessary to change

@ Springer

3866 P. Neamatollahi et al.

(a) Coln Colb

Rowa] Py -
Y@

Y&

Rowm |

Yo
Y&

Ry
y)
Vi

P;

token Request

(b) Gili Colb
| | | | |
Row a —| -
1
Rowm_ [|& P; v _ Pj] |.@
v
|_ | | | | |]

token Request

Fig. 1 Total messages exchanged between processes in the algorithm

the token movement column. The principle causes all processes to tolerate an
approximately equal workload. The manner in which this principle is implemented

A simple token-based algorithm for the mutual exclusion... 3867

3.2 Data structures and messages

Data structures and messages used in the proposed algorithm are described as follows.
Request is a kind of message sent by a process needing to enter its CS, such as P;. This
message contains the identification number of its creator and is denoted as Request;.

Token is a record which is embedded within a message. It contains a field named
RowCounter. To implement PCL_3, the number of rows passed from where the Token
started its vertical movement is counted using the RowCounter field of the Token.
Regarding this field, whenever the Token completely circulates a column, another
field of the Token, namely ChgCol, is set to TRUE. In other words, the ChgCol is a
Boolean variable that indicates whether changing columns is necessary or not. If it is
TRUE, the Token should jump one step to the right to restart its vertical movement in
a new column. The other field of the Token is ColCounter which may have different
values in various situations; it is negative when the Token is changing its movement
column, zero when the Token is received from the neighbor above, and positive when
the Token counts the number of columns while it is navigating a row.

Each node has a local queue of the maximum size of two in order to save the
requests named Waiting;. The small size of this queue prevents an overhead due
to the handling of high-volume data. Also, each node has a local Boolean parameter
called CS-permission, which determines whether the process can enter its CS or not.

In the following algorithm details, it is assumed that process Py in row a and column
b is the token-holder process. Refer to the initialization part of the algorithm in Fig. 2.

3.3 Algorithm details

The behavior of the present study’s algorithm is investigated in three situations: (1)
process P; attempts entering its CS, (2) process P; receives a message from process
P;, and (3) process P; relinquishes its CS.

Requesting the CS: Process P; creates Request; to enter its CS and places it in the
rear of Waiting;. If there is only Request; in this queue, process P; sends its request
to its right node on the horizontal ring. Otherwise, by considering PCL_2, process P;
avoids sending Request;. Then, process P; waits until it receives the Token. Whenever
process P; receives the Token, it sets CS-permission; to TRUE and executes its CS.
This action must be performed atomically. In fact, it can be considered as an atomic
action. Refer to Lines 1-7 in Fig. 2.

Receiving a Message: When process P; receives a message from process P;, it may
be in one of two states:

e Process P; receives Request ;. If Waiting; is empty and Request; has not com-
pletely rotated through the horizontal ring, process P; inserts that request in its
Waiting and forwards it to its neighbor on the right. Otherwise, process P; ignores
that request. Refer to Lines 16-23 in Fig. 2.

e The received message is Token. In this case, one of the three states may occur:

1. Token is received from the neighbor above of process P;. As Token enters a
new row, the RowCounter field of Token is added by the quantity of one. Now,

@ Springer

3868 P. Neamatollahi et al.

Fig. 2 Pseudo-code of the Initialization:
algonthm 1N Process P’ Token.RowCounter < 1, Token.ColCounter «— 0,
Token.ChCol « FALSE.
For all processes: CS-permission < FALSE, Waiting is empty.

Distributed Mutual Exclusion Solver:
1. CASE REQUESTING THE CS:
2. CREATE Request;;
3 INSERT (Waiting;, Request;);
4 /*inserts Request; in the rear of Waiting;.*/
5 IF (there is only Request; in Waiting;) THEN
6. SEND Request; to its right neighbor;
7 WAIT (CS-permission;=TRUE);
8. CASE RELEASING THE CS:
9 CS-permission; «— FALSE;
10. CLEAR Waiting;
11. IF (Token.ColCounter = v'N) THEN
12. Token.ColCounter «— 0;
13. SEND Token to its down neighbor;
14. ELSE
15. SEND Token to its right neighbor;
16. CASE RECEIVING A MESSAGE BY PROCESS Pi:
17. SWITCH (message type)
18. CASE Request;:
19. IF (i # j AND Waiting;is empty)
20. INSERT (Waitingi,Request;);
21. SEND Request; to its right neighbor;
22. ELSE
23. IGNORE Regquest;;
24. CASE Token:
25. IF (Token.ColCounter = 0) THEN /*State in
26. which token is received from the upper neighbor.*/
27. Token.RowCounter «— Token.RowCounter +1;
28. IF (Token.RowCounter = Y'N) THEN
29. Token.ChCol « TRUE;
30. Token.ColCounter « -1;
31. SEND Token to its right neighbor;
3. ELSE IF (Waiting; is empty) THEN
33. /[*There is not any request in this row.*/
34. SEND Token to its down neighbor;
35. ELSE
36. Token.ColCounter — 1;
37. IF (There is Request; in Waiting;) THEN
38. CS-permission; «— TRUE;
39. ELSE
40. CLEAR Waitingi;
41. SEND Token to its right neighbor;
42. ELSE IF (Token.ColCounter > 0) THEN /*State in
43. which token is received from the left neighbor
44. while it has not completed its horizontal circulation.*/
45. Token.ColCounter «— Token.ColCounter +1;
46. IF (There is Request; in Waiting;) THEN
47. CS-permission; «<— TRUE;
48. ELSE
49. CLEAR Waiting;
50. IF (Token.ColCounter = V'N) THEN
51. Token.ColCounter < 0;
52. SEND Token to its down neighbor;
53. ELSE
54. SEND Token to its right neighbor;
55. ELSE IF (Token.ColCounter = —1) THEN
56. /*State in which token is changing its column.*/
57. Token.ChCol < FALSE;
58. Token.RowCounter « 1;
59. IF (Waitingiis empty) THEN
60. Token.ColCounter «— 0;
61. SEND Token to its down neighbor;
62. ELSE
63. Token.ColCounter < 1;
64. IF (There is Request; in Waiting;) THEN
65. CS-permission; <— TRUE;
66. ELSE
67. CLEAR Waitingi;
68. SEND Token to its right neighbor;

A simple token-based algorithm for the mutual exclusion... 3869

by checking this field, it is recognizable whether Token has completely rotated
a vertical ring or not. If so, it should continue its vertical movement in the
right column of process P;. In the case that the vertical rotation of Token has
not yet been completed and if there is not any request in the Waiting; queue,
Token is sent to the node below process P;. Otherwise, if Request; is not in
Waiting;, then process P; clears Waiting; and sends Token to its neighbor
on the right. In contrast, if Request; is in Waiting;, then process P; can enter
its CS. Refer to Lines 2441 in Fig. 2.

2. Token is received from the neighbor on the left of process P;. In this case,
process P;can enter its CS if this has been previously requested. If not, process
P; clears Waiting; and sends Token to its neighbor on the right if Token has
not completed a rotational movement on this row. Otherwise, process P; sends
Token to the node below to resume its vertical movement. Refer to Lines 42—-54
in Fig. 2.

3. Token is received from the neighbor on the left of process P; in order to change
the vertical movement column of Token. Process P; checks its Waiting and, as
mentioned in Case 2, makes a decision whether to send Token on its regular
course, that is, to start its horizontal circulation with the aim of responding to
requests from nodes located in this row or to send Token to the node below in
order to start its vertical movement in this new column; this action is performed
when Waiting; is empty. Refer to Lines 55-68 in Fig. 2.

Releasing the CS: One can now suppose a situation in which process P; finishes its CS
execution. First, it makes C S- permission; equal to false so that it cannot immediately
enter its CS, so as to prevent other needy processes from starving. Then, process P;
clears Waiting;. If Token has completed its horizontal movement, process P; sends
Token to its neighbor process below; otherwise, process P; sends Token to its neighbor
on the right. Refer to Lines 8-15 in Fig. 2.

3.4 A scenario

In addition to describing the pseudo-code of the proposed algorithm’s formal pre-
sentation, the present study utilizes a scenario to explain actions in detail and with
the assistance of Fig. 3. In Sect. 3, it is assumed that Py is the token-holder process.
As shown in Fig. 3a, process Pg (here k is equal to 8) sends Token in a downward
direction, while process Pj¢ attempts to invoke its CS. Therefore, process Pjg inserts
Request | in Waiting ¢ and then sends Request ¢ to its neighbor on the right so
that all nodes in its row are eventually informed of its need to enter CS.

Now, process Pig, after receiving Token, checks its Waiting. Waiting,g is empty
because Request g has not yet arrived to process Pig. Thus, process Pig sends Token
in a downward direction to continue the vertical movement of Token in column 3 (see
Fig. 3b).

On the other hand, process P»3, after obtaining Token, passes Token to the next
node in the vertical movement of Token. This action is continued through process P3
in Fig. 3c. Also, the request of process P has arrived at all nodes in row 4 and is
inserted in the Waiting queues of those nodes.

@ Springer

3870 P. Neamatollahi et al.

n
—_
o
~
Q
3
(o]
2
-
Q
s
-
(o]
2
s
a
e
”
—_
s
~
[«]
<
[«]
s
-
a
|3
«
Q
3
-
o)
A
»n

SO

@) car caz cus

Q
S
-

Col 5

Row 1 Row 1

s

ke,

Row 2 Row 2

3

Row 3 Row 3

Row 4 Row 4

Row § Row 5

EEEE——|‘

e s

LeT oD
ERE T

Sl

Fh e
e

e

b

ool
Fﬁ'lﬂ

(B,
SERY
G

(b)

o
<
”
=
A
S
o
N
A
B
A
S
~

Row 1 ’llﬁﬂ 3 ’1 Rowl*coé ?"};&% Row|r¢7—-—i Co%co%«“*ls?
o BERREERE) v RE s
o B @ e B @ e B
(C) Coll Col2 Col3 Col4 Col5 (g) (k) (‘o!l Col2 Col3 (0'14 Col 5

Row 1 Row 1 Row 1

=]
=]

Row 2 Row 2 Row 2

.
s

Row 3 Row 3 Row 3

Row 4 3 Row 4 Row 4

Row 5§ Row 5§

b
B s
L il
TR
slalslnto
bbb
e

b

e
ThLh

Row 5

oW
G
oo

(d) Coll Col2 Col3 Col4 Col5 (h) Coll Col2 Col3 Col4 Col5

Row 1 ﬁ P Rowl#i##ﬁ . Token holder node
""“zr P ""‘”r E Requesting node
""“’r‘@* PP} "““‘3‘@— ; Waiting queue is not empty
e T

s BB

Fig. 3 A scenario

In Fig. 3d, processes P17 and P9, which are attempting to invoke their CSs, find
their Waitings non-empty. Therefore, they just insert their Requests in corresponding
Waitings and do not forward those messages to their next node according to PCL_2.
This action leads to fewer message exchanges. On the other hand, process Pg, after
receiving Token, passes it to the node on the right. This changing of columns is due to
the finalizing of the circular movement of Token in column 3.

ken begins in column 4 through process Py.
o & S] g

process Pig.

A simple token-based algorithm for the mutual exclusion... 3871

After receiving Token, process Pjg, in Fig. 3f, enters the CS and then clears
Waiting 9. Processes P, and Ps simultaneously request to enter their CSs.

After executing its CS, process P9 sends Token to process Psg, as shown in Fig. 3g.
Because process P> has not made any request itself, it clears its queue and forwards
Token to its neighbor on the right (process Pj¢).

As depicted in Fig. 3h, when receiving Token, process P4 enters its CS. Process Pi¢
then clears its Waiting after releasing its CS and then sends Token to process P17. Upon
receiving Token, process P17 enters its CS, releases it and then passes Token to the next
process. After receiving Token, process Pig clears its queue and forwards Token to pro-
cess P1g. Onthe other hand, Request 5 is inserted in the Waiting of processes Ps and Pj.
Similarly, Request, is placed into the Waiting of processes P>, P3,and Py4.Itis notable
that these two requests will not be forwarded to other nodes according to PCL_1.

In Fig. 3i, as a horizontal ring is completely traversed by Token, process P19 sends
it to the neighbor blow so that Token can resume its vertical movement.

Token keeps its vertical movement over the nodes until it reaches process P4 whose
Waiting is non-empty (Fig. 3j). Now, Token is responsible for responding to all pending
requests in row 1. Besides, all the nodes in this row clear their Waitings while Token
passes over them. As Token completes the horizontal rotation, it moves down and
comes back to the first location where it started the vertical circulation (process Po).

Now, the Token must change its column on its regular course (Fig. 3k). Process Pjg
continues the algorithm as explained.

With the assistance of this scenario, the present study has described all aspects of
the algorithm.

4 Proof of correctness

Proving the correctness of the proposed algorithm depends on satisfying safety and
liveness properties. Therefore, the present work should separately prove that each of
these properties is assured.

4.1 Safety

Safety is assured if no more than one node executes its CS at one time. For each
pair of nodes, one node must release its CS before the other node enters its CS. At
first, there is only one token-holder node in the current work’s token-based algorithm.
Of course, this node cannot remain the token-holding node because the proposed
algorithm requires perpetual movement of the token. As only the token-holder node
can enter its CS, it is sufficient to show that just one token-holder node exists at any
given time. Only the token-holder node can send the token to just one other node, after
which it becomes a non-token-holder node. The token is transferred to the receiver
node within a limited time. Furthermore, a token cannot be produced and sent by any
non-token-holder node.

Theorem 1_(Safety) The proposed algorithm in Fig. 2 achieves safety.

@ Springer

3872 P. Neamatollahi et al.

Proof The present study uses “reduction to the absurd” to prove safety assurance.
Thus, it must be stated that the safety is not assured. As a result, two or more nodes
can simultaneously execute their CSs. In the proposed algorithm, because only the
token-holder node can enter its CS, the system must then be a multi-token one. Thus,
these tokens existed in the system, to begin with, or some nodes produced tokens, or
some non-token-holder nodes sent the token messages to other nodes, or the token-
holder node could have sent the token to more than one node. Considering these
explanations, the assumptions are impossible. Hence, a contradiction exists that proves
the assumption that more than one node can simultaneously enter CSs is incorrect. As
a result, safety is assured. O

4.2 Liveness

Liveness is assured if every CS request will eventually be responded to. Liveness
includes freedom of deadlock and starvation.

Theorem 2 (Liveness) The algorithm in Fig. 2 achieves liveness.

Proof By means of a contradiction, the present study proves that liveness is assured.
It is therefore assumed that the algorithm does not ensure liveness. This assumption
can be the result of one of the following situations:

e None of the nodes are token-holder nodes, and Token cannot be forwarded to other
nodes: This case is erroneous because it is mentioned, on the assumption, that Py
is the token-holder node at the beginning of the algorithm and Token is passed
from one node to another.

e The token-holder node does not know whether other nodes have requests or not:
This is incorrect because when a node attempts to invoke its CS, it inserts the
Request in its Waiting queue and then sends the Request to the next node along
the horizontal ring. This forwarding of the Request message is continued until it
returns to the owner node. In the circular path of the Reqguest message, each node
also inserts the Request in its Waiting. Furthermore, Token circulates vertically and
eventually meets up with one of these alerted nodes. Therefore, Token understands
that there is at least one pending request in this row and so starts its horizontal
movement to respond to any possible request. It is noteworthy that Token resumes
its vertical circulation as it completes a horizontal rotation. As a result, there is
no starvation of nodes in other rows because the new requests of a row do not
permanently keep the Token in that row. Therefore, the first assumption is wrong.

e The token-holder node does not pass Token to other nodes and keeps it forever.
This assumption is incorrect because if the token-holder node attempts to invoke
its CS, it executes the CS in a finite time period. After releasing its CS and clearing
its Waiting, the Token must be forwarded to another node. Therefore, in these two
conditions, this node becomes a non-token holder node:

1. If Token has not completed its horizontal circulation, it will be forwarded to
the neighbor on the right of the token-holder node.

2. Otherwise, Token will be delivered to the neighbor below to continue its vertical
movement in a column.

@ Springer

A simple token-based algorithm for the mutual exclusion... 3873

This contradiction then indicates that the anti-liveness assumption cannot be cor-
rected.

e Messages do not arrive at the destination node: This is incorrect. Based on the
assumptions of the proposed algorithm, the network is error-free. Hence, this
statement is also wrong.

In the end, liveness is assured. O

5 Comparison analysis

As deduced from the literature, the execution time of algorithm instructions is negli-
gible in contrast to that of message passing. Therefore, similar to the other presented
articles in the literature [28,38,40,42], the current study counts the number of messages
exchanged in order to evaluate the performance of the algorithm. The performance of
DME algorithms is considered under three conditions: light, medium, and heavy load
situations [4,28,38,40]. In the literature, the overhead is often due to message passing.
Therefore, the lower the number of message exchanges the lower the overhead of the
algorithm. In addition, the scalability of DME algorithms depends on the message
complexity of these algorithms. Therefore, the proposed algorithm (as shown in the
following), due to reducing the message complexity, improves the scalability property
and reduces the overhead.

5.1 Light demand situation

The present study assumed a status in which only process P; (in row m and column
n of the logical torus) attempts to invoke its CS. To do so, it inserts Request; in
its Waiting and sends that message to its neighbor on the right. The neighbor also
inserts the Request; in its Waiting and then forwards it to the node on the right. This
action continues until Request; comes back to process P;. This means that the message
completely circulates a horizontal ring. Therefore, up to this stage of the algorithm, the
number of messages exchanged is +/N . In addition, the number of messages exchanged
for Token, which are received by one of the alerted nodes in row m, is between 1 and
VN + 1. One message is required if Token is in row m — 1; also, /N + 1 is required
when Token must circulate around a vertical ring and also change its column to arrive
at a node in row m. After that, Token needs ~/N relocations to respond to process Pls
request and other possible pending requests in this row. Consequently, as shown in
Table 1, between 2+/N + 1 and 34/N + 1, messages are exchanged under a light load
condition. This is fewer than that of many other algorithms, such as [1,31-36,36-39].

5.2 Heavy demand situation

The current study assumes a status in which all nodes attempt to simultaneously
invoke their CSs and in which each of them tries to enter the CS again immediately
after releasing its CS. Therefore, each of these N nodes sends their requests to the
next node on the right. Because each node places its Request message in its Waiting, a

@ Springer

P. Neamatollahi et al.

3874

Ppaseq-amonns

(NMO NN - N/T (NMO Ppaseq-uayol puqhy [e21307 [0F] T8 30 1oye],
Paseq-aInidonas
NN - I - N Y - pugly 121807 [ge] e 12 TepAeq
1+ R\(vm uay0) Y} JO Ppaseq-aImonns wyjode
(1 +NMT € € - (U+ANME (NMO Sutsow [emodiog [e21307] pasodoig
paseqg-ainionns
a-aM¢ TG-NMS T—-NME - (=ANMS Mo paseq-wnionQy o180 [1¢] emeyoR
Ppaseq-aImonns [z€]
N N N N N (N)O Poseq-uoIssIuIdg [eo130 ‘[e 10 onbezzey
[g€]
(1—-N)T 11— N)T (1—N)T (I1—N)T (1—-N)T (1)O poseq-uoissiuLag POSEQ-ISEOPEOIY B[EMEISY—MIEOTY
(1= N)E (11— N)E (I1—N)€ (1= N)E (11— N)E (1)O Ppaseq-usyol-uoN paseq-isedpeorg [1] ody
Paseq-aInionas
(N BoDo - 4 (N BoDo N (Mo Sunyse UYL, [eoI80] [oyaI-T
paseq-amjonis
(N 3oDOo 4 4 (N 3oD0 (I1—-N)T (Mo Sunyse uayoL, o507 [6g] puous
N N N N N Mo Sunyse uayol, paseq-iseopeorg EE%MI%
udy0) aY) Jo paseqg-aInionns
(MO I I UN N (N0 Sutsow [emadiog [eo1507] [Lg] uue
puewap WYSIT puewop AABSH SBI 1S9g 9sed aFeIoAy QSO ISIOM

Kyrxodwios oFessoj

Sunrem a3eroay

Qwr) Poseq-uol-UoON
/paseq-uao],

paseq-e1nionns [ed150]

/paseq-jsedpeolg

WYILIO

swyiLIoS[e oy Jo uoneneAq | I

A simple token-based algorithm for the mutual exclusion... 3875

node finds its Waiting non-empty and, in the case of PCL_1, does not forward the other
node’s request to the next node. Therefore, there are N message exchanges for all nodes
up to this step of the algorithm. It should be noted that, if some nodes asynchronously
attempt to invoke their CSs, they just place that request in their Waiting and do not
forward it to the next node according to PCL_2. The reason for this is that they find
their Waiting non-empty. Thus, there are still at most N message exchanges in this
case.

At this time, the number of messages exchanged by the Token movement must be
counted. Token circulates a row to respond to all pending requests on that row, and
there are ~/N number of rows. Therefore, \/ﬁ x+/N =N messages to be exchanged
for Token movements in rows. Also, /N 4 1 messages are exchanged for the vertical
circulation of Token in regard to column changing.

Totally, under heavy condition, there are 2N ++/N + 1 message exchanges including
Token and Request messages. Therefore, the average number of messages exchanged
per CS invocation is, at the most, three:

2N ++/N +1

< 3(for N > 2),
N

which is far less than that of many other algorithms (e.g., [1,31-34,36,39,40]), as
shown in Table 1.

5.3 Medium demand situation

Here, a status is assumed in which +/ N nodes attempt to simultaneously invoke their
CS:s. In this situation, two cases are considered:

e Best case: This case occurs whenever /N requester nodes are located in the same
row. Therefore, similar to the heavy demand situation, there are /N message
exchanges for all nodes in this row to request their CSs. On the other hand, at
most, v/N + 1 messages are required for Token to arrive at the alerted node in this
row. Then, there are ~/N message exchanges to move Token to this row. Totally,
3v/N + 1 messages are exchanged in this case; therefore, the average number of
messages exchanged per CS invocation is approximately three.

e Worst case: This case presents a situation in which /N requester nodes are
located in different rows. This case is similar to the light demand situation in that,
to request the CS, each requester node alerts the nodes in its rows; this requires
VN x /N = N messages to be exchanged. Also, /N + 1 and v/N x v/N =
N messages are exchanged for the vertical and horizontal circulation of Token,
respectively. Therefore,

2N ++/N+1
VN

Thus, the average number of messages exchanged per CS invocation (3 to 3N)
is less than that of many other algorithms (e.g., [1,32-34,37]).

<3JN (for N > 2)

@ Springer

3876 P. Neamatollahi et al.

6 Conclusion and future work

This present paper presented a new distributed algorithm to solve the mutual exclusion
problem in distributed environments. A logical structure was assumed in the form of
a two-dimensional torus, in which requests are sent in a horizontal ring (rows of the
torus), and a token rotates in a vertical ring (the columns of the torus). The current
work proved that the algorithm correctly satisfies CS entry requests, and hence, safety
and liveness properties are assured. By maintaining the simplicity of the implementa-
tion, the scalability property was increased and the average waiting time shortened in
comparison with the token-ring algorithm. In addition, the overhead decreased due to
the manipulation of high-volume data, in contrast to many other algorithms.

Generally, in light demand scenarios, the number of necessary message exchanges,
between Zﬁ +1and 3\/N + 1 per CS invocation, is more than that of heavy demand
conditions (3 messages). In comparison with leading algorithms, the performance of
the proposed algorithm is better in terms of fewer message exchanges, especially in
the heavy load situations. Therefore, the authors recommend that the algorithm be
implemented in distributed systems with high demand. For future work, focus will be
placed on fault tolerance aspects, such as token loss, which is a significant issue for
token-based DME solutions.

References

1. Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM
21(7):558-565

2. Saxena PC, RaiJ (2003) A survey of permission-based distributed mutual exclusion algorithms. Com-
put Stand Interfaces 25(2):159-181

3. Thapliyal H, Arabnia HR, Srinivas MB (2009) Efficient reversible logic design of BCD subtractors.
In: Gavrilova ML, Kenneth Tan CJ (eds) Transactions on computational science III. Springer, Berlin,
pp 99-121 (LNCS 5300)

4. Lejeune J, Arantes L, Sopena J, Sens P (2015) A fair starvation-free prioritized mutual exclusion
algorithm for distributed systems. J Parallel Distrib Comput 83:13-29

5. Arabnia HR, Oliver MA (1986) Fast operations on raster images with SIMD machine architectures.
Comput Graph Forum 5(3):179-188

6. Thapliyal H, Jayashree HV, Nagamani AN, Arabnia HR (2013) Progress in reversible processor design:
a novel methodology for reversible carry look-ahead adder. In: Gavrilova ML, Kenneth Tan CJ (eds)
Transactions in Computational Science. Springer, pp 73-97 (LNCS 7420)

7. Thapliyal H, Arabnia HR, Bajpai R, Sharma KK (2007) Combined integer and variable precision
(CIVP) floating point multiplication architecture for FPGAs. In: Proceedings of 2007 International
Conference on Parallel and Distributed Processing Techniques and Applications; PDPTA’07. pp 449—
450

8. Thapliyal H, Arabnia HR (2006) reversible programmable logic array (RPLA) using Fredkin and Feyn-
man gates for industrial electronics and applications. In: Proceedings of 2006 International Conference
on Computer Design and Conference on Computing in Nanotechnology (CDES’06). pp 70-74

9. Thapliyal H, Srinivas MB, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel
subtractors. In: Proceedings of 2005 International Conference on Embedded Systems and Applications,
ESA’05. pp 165-172

10. Qureshi MB, Alrashed S, Min-Allah N et al (2015) Maintaining the feasibility of hard real-time systems
withrasreducedmumbernof priorityslevelssintdsAppl Math Comput Sci 25(4):709-722. doi:10.1515/
amcs-2015-0051

@ Springer

http://dx.doi.org/10.1515/amcs-2015-0051
http://dx.doi.org/10.1515/amcs-2015-0051

A simple token-based algorithm for the mutual exclusion... 3877

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.
24.

25.

26.

27.
28.

29.

30.

31.

33.

34.

35.

36.

37.

38.

39.

Alrashed S, Alhiyafi J, Shafi A, Min-Allah N (2016) An efficient schedulability condition for non-
preemptive real-time systems at common scheduling points. J Supercomput 72:4651-4661. doi:10.
1007/s11227-016-1751-6

Hura GS (1989) The role of atomic actions in a distributed system. Microelectron Reliab 29(2):185-193
Leiserson CE (2016) A simple deterministic algorithm for guaranteeing the forward progress of trans-
actions. Inf Syst 57:69-74

Tamhane SA, Kumar M (2012) A token based distributed algorithm for supporting mutual exclusion
in opportunistic networks. Pervasive Mob Comput 8:795-809

Jiang J-R (2011) Nondominated local coteries for resource allocation in grids and clouds. Inf Process
Lett 111:379-384

Bertier M, Obrovac M, Tedeschi C (2013) Adaptive atomic capture of multiple molecules. J Parallel
Distrib Comput 73:1251-1266

Aravind AA (2013) Simple, space-efficient, and fairness improved FCFS mutual exclusion algorithms.
J Parallel Distrib Comput 73:1029-1038

. WuW, Zhang J, Luo A, Cao J (2015) Distributed Mutual Exclusion Algorithms for Intersection Traffic

Control. IEEE Trans Parallel Distrib Syst 26:65-74

Ni W, Wu W, Li K (2016) A message efficient intersection control algorithm for intelligent transporta-
tion in smart cities. Futur Gener Comput Syst. doi:10.1016/j.future.2016.10.033

Ciuffoletti A (2010) The wandering token: congestion avoidance of a shared resource. Future Gener
Comput Syst 26(3):473-478

Tanenbaum AS, Van Steen M (2007) Distributed systems-principles and paradigms. Pearson Prentice
Hall, Upper Saddle River

Paydar S, Naghibzadeh M, Yavari A (2006) A hybrid distributed mutual exclusion algorithm. In:
International Conference on Emerging Technologies 2006, ICET’06. IEEE, pp 263-270

Dijkstra EW (1965) Solution of a problem in concurrent programming control. Commun ACM 8:569
LiZ, Yan M, Zhou M (2010) Synthesis of structurally simple supervisors enforcing generalized mutual
exclusion constraints in petri nets. IEEE Trans Syst Man Cybern C (Appl Rev) 40:330-340
Hesselink WH (2016) Correctness and concurrent complexity of the Black-White Bakery Algorithm.
Formal Asp Comput 28(2):325-341

Bienkowski M, Klonowski M, Korzeniowski M, Kowalski DR (2016) Randomized mutual exclusion
on a multiple access channel. Distrib Comput 29(5):341-359

Taubenfeld G (2014) Tight space bounds for ¢ -exclusion. Distrib Comput 27(3):165-179

Park S-H, Lee S-H (2014) Quorum-based mutual exclusion in asynchronous distributed systems with
unreliable failure detectors. J Supercomput 67(2):469-484

Aravind AA (2010) Highly-fair bakery algorithm using symmetric tokens. Inf Process Lett 110:1055—
1060

Kakugawa H (2015) Self-stabilizing distributed algorithm for local mutual inclusion. Inf Process Lett
115:562-569

Maekawa M (1985) An algorithm for mutual exclusion in decentralized systems. ACM Trans Comput
Syst 3(2):145-159

. Razzaque MA, Hong CS (2008) Multi-token distributed mutual exclusion algorithm. In: 22nd Inter-

national Conference on Advanced Information Networking and Applications, 2008, AINA. IEEE, pp
963-970

Ricart G, Agrawala AK (1981) An optimal algorithm for mutual exclusion in computer networks.
Commun ACM 24(1):9-17

Suzuki I, Kasami T (1985) A distributed mutual exclusion algorithm. ACM Trans Comput Syst
3(4):344-349

Raynal M (1991) A simple taxonomy for distributed mutual exclusion algorithms. ACM SIGOPS Oper
Syst Rev 25(2):47-50

Naimi M, Trehel M, Arnold A (1996) A log (N) distributed mutual exclusion algorithm based on path
reversal. J Parallel Distrib Comput 34(1):1-13

Le Lann G (1977) Distributed systems-towards a formal approach. In: IFIP Congress. Toronto, pp
155-160

Neamatollahi P, Taheri H, Naghibzadeh M (2012) Info-based approach in distributed mutual exclusion
algorithms. J Parallel Distrib Comput 72(5):650-665

Raymond K (1989) A tree-based algorithm for distributed mutual exclusion. ACM Trans Comput Syst
7(1):61-77

@ Springer

http://dx.doi.org/10.1007/s11227-016-1751-6
http://dx.doi.org/10.1007/s11227-016-1751-6
http://dx.doi.org/10.1016/j.future.2016.10.033

3878 P. Neamatollahi et al.

40. Taheri H, Neamatollahi P, Naghibzadeh M (2011) A hybrid token-based distributed mutual exclusion
algorithm using wraparound two-dimensional array logical topology. Inf Process Lett 111:841-847

41. Agrawal D, El Abbadi A (1991) An efficient and fault-tolerant solution for distributed mutual exclusion.
ACM Trans Comput Syst 9(1):1-20

42. Kakugawa H (2015) Mutual inclusion in asynchronous message-passing distributed systems. J Parallel
Distrib Comput 77:95-104

Journal of Supercomputing is a copyright of Springer, 2017. All Rights Reserved.

www.manharaa.com

	A simple token-based algorithm for the mutual exclusion problem in distributed systems
	Abstract
	1 Introduction
	1.1 Background
	1.2 Contribution
	1.3 Organization

	2 Model
	3 Proposed algorithm
	3.1 An informal description of the algorithm
	3.2 Data structures and messages
	3.3 Algorithm details
	3.4 A scenario

	4 Proof of correctness
	4.1 Safety
	4.2 Liveness

	5 Comparison analysis
	5.1 Light demand situation
	5.2 Heavy demand situation
	5.3 Medium demand situation

	6 Conclusion and future work
	References

